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ABSTRACT: This review examines the complex interactions between 
Mycobacterium tuberculosis and host immunity, with a focus on Mtb and immune 
evasion. Upon inhalation, Mtb infects alveolar macrophages, inhibiting phagosome-
lysosome fusion to survive. Dendritic cells are later activated, driving CD4+ T cell 
differentiation and IFN-γ release to enhance macrophage bactericidal activity. Mtb 
may be sequestered in granulomas, which contain the infection but facilitates Mtb 
persistence during latency. Further, cytotoxic T lymphocytes eliminate infected cells, 
while regulatory T cells modulate immunity. Overall, host immune responses must 
balance between pathogen control and tissue damage. Thus, Mtb’s immune evasion 
mechanisms pose a significant challenge for vaccine development and therapeutic 
intervention. Understanding these interactions is critical for uncovering novel 
strategies against Mtb infection and improving public health outcomes. 
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The Mucosal Barrier and Innate Inflammatory Signalling  

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is 
an airborne infectious disease that remains one of the leading causes 
of death globally.1 The clinical spectrum of TB ranges from latent, 
asymptomatic, and non-transmissible states to active, transmissible, 
and potentially life-threatening forms.2 Mtb primarily infects the 
mucosal tissue of the respiratory tract, leading to symptoms such as 
persistent cough, fever, and fatigue.3 A deeper understanding of the 
pathogen’s disease mechanisms and its interaction with the host 
immune system is essential for developing more effective therapeutic 
strategies and controlling the global TB burden.4  

Upon inhalation, Mtb settles within the alveoli of the lungs, 
initiating its interaction with the lung mucosal barrier.5 This barrier 
consists of the alveolar lining fluid (ALF), an aqueous-hypophase, 
which serves as the first line of defence within the alveolar space.6 
ALF contains essential soluble innate components, including 
complement proteins, which play a critical role in early immune 
responses against Mtb.7 Notably, ALF-hydrolases actively alter the 
Mtb cell wall, enhancing the ability of human macrophages to 
recognize and eliminate the pathogen.8  

Simultaneously, Mtb activates a family of human toll-like 
receptors (TLRs) on the membrane surfaces of immune cells, such as 
macrophages.9 Among these, TLR2 and TLR4 play pivotal roles in 
initiating antimicrobial responses against Mtb.10 These receptors 
initiate intracellular signalling pathways in leukocytes through both 
pro- and anti-inflammatory cytokines, enhancing the expression of 
adhesion molecules on immune cell surfaces.11 Although the role of 
TLR4 remains debated, Park et al. demonstrated its importance in 
regulating neutrophil recruitment and cytokine production.12 For 
instance, proinflammatory cytokines such as interferon-gamma (IFN-
γ) and anti-inflammatory cytokines such as interleukin 10 (IL-10) are 
triggered by TLR4 during Mtb infection.13 Notably, TLR4 deficiency 
in mice resulted in an uncontrolled Mtb infection due to disrupted IL-
10 signalling and neutrophil depletion.14 TLR2, on the other hand, is 
critical for inducing tumour necrosis factor-alpha (TNF-α), a key 
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Immune Cell Recruitment Through Complement Activation 

Early interactions between the complement system and other innate 
immune factors play a critical role in the formation and maintenance 
of granulomas.31 Complement regulatory proteins, such as C3b and 
C4b, coat the surface of Mtb through opsonization, enhancing 
macrophage recognition and phagocytosis to promote bacterial 
lysis.32 33 Additionally, complement proteins like C5a and C3a 
enhance inflammation, which engages natural killer (NK) cells and 
neutrophils to the site of infection.34 These cells contribute to the 
immune defence by limiting infection and minimizing tissue 
damage.35 36 These coordinated interactions between complement 
proteins and immune cells are essential for controlling the pathogen 
and maintaining immune homeostasis during infection.  

The complement system also actively engages with NK cells, 
which are key early responders in innate immunity recruited to sites 
of Mtb infection.37 Although traditionally known for targeting 
tumours and virally infected cells, NK cells have also been shown to 
bind to and kill Mtb.38 Vankayalapati et al. reveal that NK cells 
express cytotoxic receptors—NKp30, NKp44, and NKp46—that 
enable them to recognize and lyse Mtb-infected macrophages.39 The 
cytokines IL-2 and IL-12 enhance the antimycobacterial activity of 
NK cells by inducing the expression of NKp44.40 This facilitates 
direct interactions with its corresponding ligand on the surface of 
Mtb-infected macrophages, leading to the production of IFN-γ and 
further activating macrophages to contain and eliminate the 
infection.41 By activating NK cells, these cytokines strengthen 
immune defences, making bacterial replication and spread more 
difficult.42 43 Additionally, Lu et al. propose a direct killing 
mechanism in which NK cells release cytoplasmic granules 
containing perforin and granulysin through nanotube-like 
structures.44 These granules compromise the integrity of the bacterial 
cell wall, contributing significantly to Mtb death and reinforcing the 
importance of NK cells in controlling TB infections.45  

The complement system's final interaction involves 
neutrophils–highly motile innate immune cells that migrate to the 
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lungs in response to chemokine signals, particularly IL-8, released by 
macrophages.46 Neutrophils express complement receptors, Fc-
receptors, and TLRs, enhancing pathogen recognition and facilitating 
phagocytosis through specialized phagosome vesicles.47 These 
phagosomes fuse with granules containing antimicrobial enzymes 
and ROS, aiding pathogen clearance.48 Furthermore, neutrophils 
amplify the immune response by secreting TNF-α, a proinflammatory 
cytokine that promotes granuloma formation and macrophage 
activation.49 They also release interleukins such as IL-1β and IL-6, 
contributing to inflammatory signalling and immune cell 
recruitment.50 Additionally, neutrophils can undergo a unique form 
of cell death known as NETosis, releasing neutrophil extracellular 
traps (NETs) to capture and immobilize Mtb.51 In contrast, Hedlund 
et al. demonstrated that following interactions with Mtb, neutrophils 
can undergo accelerated apoptosis instead.52 These apoptotic 
neutrophils, unlike those undergoing NETosis, do not release NETs 
but instead activate mucosal dendritic cells (DCs) through specific 
surface molecules, further supporting immune responses and 
strengthening host defence mechanisms.53 

Adaptive Immunity Initiated by Dendritic Cells and T Cells 

Dendritic cells serve as essential antigen-presenting cells (APCs), 
bridging the innate and adaptive immune response.54 Upon infection, 
DCs residing in the lung mucosa recognize Mtb through TLRs and 
initiate phagocytosis for antigen processing.55 These infected DCs 
then migrate to the draining lymph nodes, where they present Mtb-
derived antigens to CD4+ and CD8+ T cells via MHC class I and II 
molecules, respectively.56 Tian et al. demonstrated that DC depletion 
in mice impaired the generation of effective CD4+ T cell responses, 
leading to uncontrolled Mtb replication in the lungs.57 Through MHC 
class II presentation, DCs activate CD4+ T cells, which rely on 
cytokine signalling to mount a strong inflammatory response.58 IL-
12, released from APCs such as macrophages, promote the 
differentiation of CD4+ T cells into T helper 1 (Th1) cells.59 Th1 cells 
produce IFN-γ, a critical cytokine that enhances macrophage activity, 
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improving their ability to engulf and kill Mtb.60 Once the infection is 
controlled, the immune system generates memory CD4+ T cells that 
retain antigen recognition, facilitating a faster and more robust 
response upon re-exposure to Mtb.61 This protective memory 
immunity ensures an efficient defence in future encounters. Murine 
studies further underscore the importance of CD4+ T cells, showing 
that their depletion results in compromised immune responses, 
increased bacterial burden, and TB progression, highlighting their 
critical role in controlling Mtb infection.62   

Substantial evidence supports the protective role of CD4+ T 
cells against Mtb, but determining the specific contribution of CD8+ 
T cells remains challenging due to differences in antigen 
recognition.63 CD4+ T cells recognize exogenous antigens presented 
on MHC class II molecules, while CD8+ T cells detect cytosolic 
antigens through MHC class I molecules.64 Since Mtb primarily 
resides within infected cells, extracellular antigen presentation by 
CD4+ T cells is more easily observed than the intracellular 
presentation required for CD8+ T cell activation.65 However, Flynn et 
al. demonstrated that CD8+ T cells play a crucial role in controlling 
Mtb infections, as mice deficient in CD8+ T cells due to β2-
microglobulin gene disruption exhibited impaired control of infection 
compared to wild-type mice.66 Like CD4+ T cells, CD8+ T cells 
produce IFN-γ, enhancing macrophage antimicrobial functions and 
promoting granuloma formation.67 In vitro studies of human cells 
show that CD8+ T cells also possess cytolytic capabilities similar to 
NK cells, releasing perforin and granzymes into the synapse between 
the CD8+ T cell and Mtb-infected cells.68 Perforin creates pores in the 
membranes of infected cells, enabling granzymes to enter and induce 
apoptosis.69 Proper regulation of these cytolytic functions is essential 
for maintaining immune homeostasis and preventing excessive tissue 
damage during infection. 

Regulatory T cells (Tregs), a subset of both CD8+ and CD4+ 
T cells, modulate immune responses against Mtb.70 Tregs use anti-
inflammatory cytokines to suppress the proinflammatory responses 
necessary for controlling Mtb growth, preventing excessive tissue 
damage.71 However, this immunosuppression can also be detrimental 
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in limiting the spread of Mtb.72 Yu et al. found that as TB severity 
increases, CD8+CD28−Treg cells increase to control excessive 
immune activation.73 They also reported elevated levels of 
CD4+CD25++ Treg cells in the peripheral blood of TB patients 
compared to healthy individuals, indicating that persistent immune 
activity promotes Treg expansion.74 This increase in Treg cells can 
be problematic, as their heightened anti-inflammatory activity may 
impair the body’s ability to clear Mtb, suppressing the production of 
key immune factors such as Th17 cells and IFN-γ.75 76 Such 
conditions allow Mtb to survive and potentially transition into a 
chronic disease state.77 Although Tregs primarily target T cells, Xu et 
al. demonstrated that they can also act on other immune cells, such as 
B cells, further suppressing immune responses essential for pathogen 
clearance.78  

B Cell-Mediated Antibody and Phagocytic Responses 

B cells play complex and sometimes contentious roles during an Mtb 
infection, with antibody production being a key mechanism, 
particularly involving immunoglobulin G (IgG) and A (IgA).79 
Studies indicate that children with disseminated TB exhibit 
significantly reduced IgG levels compared to those with localized TB, 
suggesting a correlation between IgG responses and disease 
severity.80 This is further supported by findings of elevated IL-21 in 
TB lesions of IL-21R-deficient mice, highlighting IL-21’s role in 
promoting IgG isotype switching in modulating IL-10 production.81 
82 83 B cell-deficient mice display elevated IL-10 levels, while B cell 
transfer reduces mortality, decreases lung bacterial burden, and limits 
granuloma progression.84 However, some research indicates that 
variations in IL-21 and IL-10 expression may not directly influence 
disease outcomes.85 IgA also plays a protective role in Mtb defence.86 
IgA-deficient mice show increased lung bacterial loads, reduced IFN-
γ and TNF-α production, and elevated IgM levels, indicating 
heightened susceptibility.87 Beyond conventional antibody pathways, 
recent studies suggest an alternative mechanism known as antibody-
dependent cellular phagocytosis (ADCP).88 Through ADCP, 
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antibodies bind to Fcγ receptors on alveolar macrophages, promoting 
opsonization, enhanced phagosome maturation, and increased 
microbicidal activity, thus restricting Mtb growth.89 90 Despite these 
insights, further research is necessary to fully understand the diverse 
and sometimes contradictory roles of B cells in both defensive and 
regulatory processes during Mtb infection. 

Conclusion 

The innate and adaptive immune systems coordinate a complex, 
multifaceted response during Mtb infection. From the initial 
encounter in the alveoli, TLRs enable early pathogen recognition, 
while macrophages attempt to eliminate Mtb through phagocytosis.91 

92 Upon macrophage infection, TNF-α upregulation drives the 
formation of granulomas, which act as containment structures to 
isolate the bacteria and prevent its spread.93 94 The complement 
system plays a crucial role by recruiting NK cells and neutrophils—
NK cells kill infected cells via cytotoxic receptors, while neutrophils 
immobilize Mtb with NETs, an essential mechanism in limiting 
bacterial dissemination.95 96 Additionally, neutrophil apoptosis 
activates mucosal DCs, which connect innate and adaptive immunity 
through antigen presentation.97 Within the adaptive response, CD4+ 
and CD8+ T cells release IFN-γ, enhancing macrophage activity, 
while Tregs regulate inflammation to prevent excessive tissue 
damage.98 99 B cells, activated later in TB infection, produce IgG and 
IgA antibodies that influence disease severity; reduced IgG levels 
correlate with more severe, disseminated TB, while IL-21 regulates 
IgG production and immune responses.100 101 102 B cell deficiency 
worsens infection outcomes, but B cell transfer reduces bacterial load 
and limits granuloma progression.103 Through the coordinated efforts 
of these immune components, the body establishes an intricate 
defence that not only controls infection but also informs the 
development of long-term therapeutic interventions against TB. 

Despite extensive research into the immune response against 
Mtb, significant gaps remain, hindering the development of effective 
interventions primarily due to the limited investigation of subclinical 
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Mtb infection.104 Though research into early disease manifestations 
has gained momentum, routine diagnostic tools–most prominently 
tuberculin skin tests–have yet to distinguish between latent and active 
disease, delaying treatment and increasing transmission risk.105 
However, advances in IFN-γ release assays (IGRA), digital PCR, and 
host blood transcriptomics present a promising avenue.106 

Further complicating intervention development is the 
incomplete understanding of TBs complex interplay between innate 
and adaptive immune responses. While innate immunity is crucial for 
early pathogen recognition and initial control, the precise roles of 
adaptive immune components, including T cell subsets and B cells, 
in long-term protection remain unclear.107 In particular, the balance 
between proinflammatory and regulatory T cell responses and the 
contribution of CD8+ T cells requires deeper exploration.108 

Moreover, Mtb remains a formidable global health threat, 
mainly due to its evolved ability to rapidly develop multidrug 
resistance.109 The development of resistance to drugs like rifampin 
highlights the need for more targeted and effective treatments, 
regardless of the financial return.110 Understanding the interplay 
between innate and acquired resistance mechanisms in Mtb will be 
key in identifying new drug targets, improving existing therapies, and 
overcoming the challenges posed by resistant strains.111 While several 
medications previously overlooked for TB treatment are available or 
under clinical investigation, a more precise understanding of the 
bacterium’s resistance mechanisms is necessary to make these 
treatments more effective.112 

Addressing these gaps will not only improve therapeutics but 
also drive the development of strategies to predict and control TB 
progression in diverse, immunocompromised and coinfected 
populations, ultimately enabling more personalized approaches to TB 
treatment and prevention. 
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